AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
自我纠错(Self Correction)能力,传统上被视为人类特有的特征,正越来越多地在人工智能领域,尤其是大型语言模型(LLMs)中得到广泛应用,最近爆火的OpenAI o1模型[1]和Reflection 70B模型[2]都采取了自我纠正的方法。
传统的大语言模型,因为在输出答案的时候是逐个Token输出,当输出长度较长时,中间某些Token出错是必然发生。但即使LLM后来知道前面输出的Token错了,它也得用更多错误来“圆谎”,因为没有机制让它去修正前面的错误。
而OpenAI o1在“慢思考”也就是生成Hidden COT的过程中,通过分析OpenAI官网给出的Hidden COT例子可以发现,在解决字谜问题的思考过程中,o1首先发现了每两个连续的明文字母会映射到一个秘文字母,于是便尝试使用奇数字母来构建明文,但是经过验证发现并不合理(Not directly);接着又重新修正答案最终成功解出字谜。
图1 OpenAI o1 官网示例(部分Hidden CoT)
Reflection 70B的关键技术也包括错误识别和错误纠正。他们用到了一种名为 Reflection-Tuning(反思微调) 的技术,使得模型能够在最终确定回复之前,先检测自身推理的错误并纠正。在实际的执行过程中,这会用到一种名为思考标签(thinking tag)的机制。模型会在这个标签内部进行反思,直到它得到正确答案或认为自己得到了正确答案。
频频应用于大语言模型的自我纠错技术为何有效?为什么纠错过程可以让模型把原本答错的问题重新答对?
为了探究这一问题,北大王奕森团队与MIT合作,从理论上分析了大语言模型自我纠错能力背后的工作机理。
论文题目:A Theoretical Understanding of Self-Correction through In-context Alignment
论文地址:https://openreview.net/pdf?id=OtvNLTWYww
代码地址:https://github.com/yifeiwang77/Self-Correction
作者团队将自我纠错的过程抽象为对齐任务,从上下文学习(In-context learning)的角度对自我纠错进行了理论分析。值得一提的是,他们并没有使用线性注意力机制下的线性回归任务进行理论分析,而是使用真实世界LLM在用的softmax多头注意力机制的transformer结构,并利用Bradley-Terry 模型和 Plackett-Luce 模型(LLM对齐的实际选择,用于RLHF和DPO)设计对齐任务进行研究。受理论启发,他们提出了一种简单的自我纠错策略--上下文检查(Check as Context),并通过实验,在消除大语言模型中存在的潜在偏见以及防御越狱攻击中效果显著。
理论分析:自我纠错实际上是一种上下文对齐?
不同于类似监督学习的标准上下文示例(请求
,回答
),自我纠错示例可以形成一个三元组形式(请求
,回答
,奖励
),这类似于通过奖励指示好坏样本的 LLM 对齐。因此,作者团队提出将自我纠错形式化为一种“上下文对齐”(In-context Alignment),即通过提供一系列自我纠错步骤的上下文,优化LLM的最终输出,以获得更高的奖励。
对齐的过程通常包括:对于问题
,收集
个不同的模型回答,然后由人类或评估模型(在本文中,评估模型即该 LLM 本身)对这
个回答给出排序偏好
。接着,使用一般的对齐模型(如Bradley-Terry (BT,n=2) or Plackett-Luce (PL loss, general n))进行建模:
其中
为奖励模型。
针对transformer模型,作者采用了带有softmax多头注意力机制的transformer结构,其前向传播更新可以分为两部分
多头注意力(MHSA)层:
FFN层:
奖励函数
被设置为负均方误差(MSE)损失,即:
在该设置下,参数的梯度下降可等价于对数据的更新:
作者证明了多层transformer(包含3-head softmax attention和relu激活函数的FFN)可以利用自我纠错样本生成更优奖励的回答。具体而言,作者证明了存在模型权重,使得transformer可以通过在前向传播的过程中执行对其内部奖励模型参数
的梯度下降,来生成更符合对齐目标的更优回答
。
这是首次在理论上表明 LLM 可以在上下文中实现对齐的分析。该理论适用于多种自我纠错方法,因为评估可以来自人类、外部验证者或 LLM 本身。
图2 关于上下文对齐的验证实验,分别涉及TF和GD的比较(a)、不同奖励噪声p的影响(b)、模型深度的影响(c)、以及不同注意力机制的效果(d)、(e)、(f)。
作者也通过设置验证实验来检验其理论导出的种种结论,以及各个 transformer 结构模块对 LLM 执行上下文对齐能力的影响,作者发现了很多有趣的结论:
通过观察比较LLM在执行上下文对齐时前向传播的损失与梯度下降的损失曲线,LLM执行上下文对齐时的前传行为与梯度下降损失曲线几乎相同。(图2(a))
评价
的质量直接影响自我纠错的质量(图2(b))。
对多样本的排序需要更深的模型层数,在达到一定深度后(15层),增加更多的层数并不能带来更高的收益。(图2(c))
Softmax注意力机制对从评价中分析回答优劣排序至关重要,而linear注意力则做不到这一点。具体来说,softmax 注意力机制可以有效地选取最优回答
并为各样本生成加权平均所需的权重。(图2(d))
多头注意力机制对token角色的区分很重要。具体而言,多头注意力机制可以将生成的回答
与正样本拉近,与负样本拉远。实验表明,3个attention head是上下文对齐任务中最优选择。(图2(e))
FFN对于token角色的转变很重要。在经过一个MHSA层后,FFN可以将上一轮的正样本屏蔽掉,从而使次优样本变成下一轮迭代的最优样本。(图2(f))
自我纠错策略:上下文检查
作者使用上下文检查(Check as Context,CaC)作为LLM完成自我纠错的方法,在两个现实世界的对齐任务中探索了自我纠错:缓解社会偏见和防范越狱攻击。
图3 BBQ数据集上使用CaC的示例。
具体而言,首先对模型请求问题
获得回答初始回答
,然后对该回答进行评估,得到奖励
。之后将初始回答
,评估
送入上下文,并重新请求问题
,得到改正后的回答
。此过程可多次重复以迭代改进回答,最终以最后一轮的模型回答
作为模型的最终输出。
消除LLM社会偏见
本文使用 BBQ(Bias Benchmark for QA)数据集,在 vicuna-7B 和 Llama2-7b-chat 模型上测试了 CaC 方法的效果。此外,还在 BBQ 上研究了模型大小、评估质量和纠错轮数对纠错效果的影响。主要结论如下:
多数情况下,自我纠错后的正确率高于原正确率(图4)
正确率提升与自我评估的准确率高度相关(图4(c):
),甚至呈线性关系(图5(a))。
采用不同的评价方式效果依次提升:仅使用对/错评价 < 自然语言评价 < 包含 CoT 的对/错评价。这是因为 CoT 不仅能提高评价准确性,还能为模型提供额外的自然语言信息。(图5(b))
更大的模型有更好的纠错能力(图5(c)(d))
当评价的正确率足够高时,更多的纠错轮数可以带来更好的纠错效果。(图5(e))
图4 CaC对于不同种类的偏见的修正
图5 BBQ上关于模型大小、评估质量以及纠错轮数的消融实验
同时,在防御越狱攻击的实验中,CaC也是所有测试的防御手段中最低的。
更多文章细节,请参考原文:https://openreview.net/pdf?id=OtvNLTWYww
参考资料:
[1] https://openai.com/index/introducing-openai-o1-preview/
[2] https://reflection70b.com/
© THE END
转载请联系本公众号获得授权
投稿或寻求报道:liyazhou@jiqizhixin.com